Acid-Catalyzed Hydrolysis of the $[Co(en)_2CO_3]^+$ Ion **Revisited**

D. A. Buckingham' and C. R. Clark

Department of Chemistry, University of Otago, **P.O.** Box *56,* Dunedin, New Zealand

Received May **7,** *1993*

Introduction

Although there have been a number of studies on the acidcatalyzed aquation of the $[Co(en)_2CO_3]^+$ ion,¹⁻³ a rigorous mechanistic description is still lacking. This is indeed a pity, since this reaction should provide the basis for understanding one of the most important processes undertaken by metal ions—the mediated hydrolysis of CO₃²⁻. The present difficulties arise partly from the failure of investigators to follow the reaction at a wavelength where its biphasic nature is fully disclosed (k_1, k_2) in Scheme I) and partly from a lack of appreciation for the acidity of the protonated reactant [Co(en)2CO3HI2+ *(Ka,* Scheme I). The expectation has been that K_a is very large (\sim 10⁶),²⁻⁴ and this assumption has not been tested. Further, the apparent inability of this rapid hydrolytic reaction to yield readily analyzable absorbance-time traces at H+ concentrations in the range **0.05-** 1.00 M hasled **toconsiderablesimplificationofthekineticanalysis.** Harris and Hyde2 collected data at *5* 12 and **360** nm but discarded the crucial first **1 s** of the data and treated the remainder as if it arose from a single exponential. A further simplification was made through the approximation of the extinction coefficient of the critical *cis*- $[Co(en)_2(OH_2)OCO_2H]^{2+}$ intermediate.² Such features would **be** expected to create problems in the interpretation of this important consecutive first-order process,⁵ and indeed the picture that has emerged is one of distorted kinetic parameters, which in turn **has** led to an incomplete view of the mechanism. It is the purpose of this note to correct these deficiencies.

Experimental Seetion

The complex $[Co(en)_2CO_3]$ (ClO₄) was obtained from $[Co(en)_2CO_3]$ -C16 by addition of NaCIO4 to a warm aqueous solution and recrystallization from water. $\lambda_{\text{max}} (\epsilon) = 510 \text{ nm} (133), 360 \text{ nm} (122).$

Rapid-scan spectra (300–600 nm) were obtained using a Durrum D-110 stopped-flow spectrophotometer equipped with a Harrick rapid-scan monochromator. The Durrum instrument was used for conventional kinetic measurements at a fixed wavelength and for measurement of the acidity constant of $[Co(en)_2CO_3H]^{2+}$. Data storage and manipulation were *carried* out **using** a North **Star Horizon** computing system with OLISsoftware.' Reactions followed at **477** nm were normally monitored to **97-98%** of the total absorbance change.

All solutions were maintained at $I = 1.0$ M (NaClO₄) and 25.0 °C, **unlees** otherwise **specified,** and were filtered through Celite prior to **use.**

The two rate constants k_{fast} and k_{slow} appropriate to the consecutive first-order kinetic scheme $A \rightarrow B \rightarrow C$ were obtained from data collected at **477** nm by **use** of the OLIS nonlinear least-squares-fitting routine V-DataFit.⁷ These rate parameters and the absorbance changes associated with each (ΔA_1) increase, followed by a ΔA_2 decrease) were initially treated **as** variables and approximate values obtained. The starting absorbance of the reaction mixture was strongly dependent on the hydrogen ion

- **(1)** Harris, G. **M.; Sastri, V.** *S. Inorg. Chcm.* **1965,4,263.** Sastn, **V. S.;** Harris, G. **M.** *J. Am. Chem. Soc.* **1!370,92,2943.**
-
- (2) Harris, G. M.; Hyde, K. E. *Inorg. Chem.* 1978, 17, 1892.
(3) van Eldik, R.; Harris, G. M. *Inorg. Chim. Acta* 1983, 70, 147.
-
- **(4) Palmer. D. A.;** van Eldik, **R.** *Chem. Rev.* **1983,83,651.** *(5)* Jackson, **W.** *0.;* Harrowfield. J. **M.;** Vowles, **P.** D. *ht. J. Chem. Kinct.*
- **1977, 9, 535. 1977, 9, 535. (6) Springborg, J.; Schaffer, C. E. Inorg. Synth. 1973, 14, 63. Absorption** (6) Springborg, J.; Schaffer, C. E. *Inorg. Synth*. 1973, 14, 63. Absorption maxima (λ_{max} , nm) and extinction coefficients (ϵ , dm³ mol⁻¹ cm⁻¹) are reported as follows: [Co(en)₂CO₃]⁺ in water, 511.5 (133)
- **(7) Ob,** V-DataFit,On **Lie** Instrument **System** Inc., Jefferson, **GA 30549.**

Figure 1. Rapid-scan spectra (path length **2** *cm)* obtained on mixing $[Co(en)_2CO_3]_{aq}$ ⁺ with HClO₄ and recorded over the range 300–600 nm. $[Co]_T$ = 2.86 mM; $[H^+]$ = 2.70 M (eight spectra recorded over 3 s following an initial time delay following **mixing** of **50 me).** Also shown is the spectrum of the final product cis - $[Co(en)_2(OH_2)_2]$ ³⁺ recorded after **13-8** reaction *(-0)* and the **spectrum** of [Co(en)zCO,]+ **(2.86** mM) in **2.70** M NaClO4 (- - -).

concentration (vide infra),⁸ as were both absorbance changes, and better fits were achieved by reducing the number of variables. This was done by setting the rate constant for the faster of the two **processes (&ha)** to a value of **0.93 s-I** independent of hydrogen ion concentration9 and by maintaining a constant final absorbance (is., *A.* was not **treated as** a variable and its value was also independent of $[H^+]$). The above approximate values for the absorbance changes and for the smaller of the two rate constants (k_{slow}) were then entered into the routine as estimates, and these were refined to convergence. In some cases, a further small improvement to the fit **(as** judged from the sum of **squares** of residuala) could **be** made by minor manual adjustments to the computed values for the absorbance changes (Le., **these** modified values were **insorted as** fusd parameters). Such adjustments never **amounted** to more than **t3%** of the observed changes and did not significantly alter the value of either rate constant.

Results and Discussion

Figure 1 shows a seriaof eight rapid-scan **spectra** (scan interval 0.43 **s)** recorded over the range **300600** nm following **mixing** a solution of $[Co(en)_2CO_3]$ ⁺ with aqueous $HClO_4$ ($[Co]_T = 2.86$ mM, $[H^+] = 2.70$ M). The final spectrum, obtained after a further delay of 10 **s** $(\lambda_{max}(\epsilon) = 493 \text{ nm} (75), 357 \text{ nm} (59)),$ corresponds to that of *cis*-[Co(en)₂(OH₂)₂]³⁺,⁶ and the initial spectrum $(\lambda_{\text{max}} (\epsilon) = 508 \text{ nm} (98), 352 \text{ nm} (103))$ is markedly

Q 1993 American Chemical Society

⁽⁸⁾ This was also the case for measurement at 512 or 360 nm. (9) In preliminary computations the fit consistently converged to this value irrespective of $[H^+]$ ($k_{\text{hat}} = 0.93 \pm 0.03 \text{ s}^{-1}$), while values for k_{slow} were always within 15% of those obtained finally.

Figure **2.** Difference spectra for the traces given in Figure 1, referenced to the final spectrum after 13 **s.**

Table I. First-Order Rate Constants for the Acid-Catalyzed Aquation of $[Co(en)_2CO_3]^+$ at 25 °C and $I = 1.0$ M $(NaClO_4)^d$

[H*]/M	$k_{\rm fast}^{\rm~obs}/\rm s^{-1}$	$k_{\rm slow}$ obs/s ⁻¹	$k_{\rm slow}$ calc/s ⁻¹ b	k^{obs}/s^{-1} c
0.10	0.93	0.0830	0.0897	0.0820
0.20	0.93	0.160	0.162	0.163
0.35	0.93	0.247	0.248	0.245
0.50	0.93	0.327	0.315	0.324
0.60	0.93	0.360	0.352	0.360
0.75	0.93	0.387	0.399	0.386
0.90	0.93	0.440	0.438	0.440
1.00	0.93	0.467	0.460	0.450(0.362)
2.70 ^d	0.93	0.560		

^a Obtained at 477 nm unless otherwise stated. ^b Calculated using eq 1, with $k' = 0.85$ s⁻¹ and $K = 1.18$ M⁻¹. ^{*c*} Observed rate constants (512nm data) obtained from plots of $ln(A_1 - A_n)$ vs time but using only the last 25-15% of the data. The value in parentheses (1.00 MH⁺) represents the "best-fit" rate constant obtained using the last 80% of the data. This corresponds to a 1-s delay before data acquisition and reproduces the conditions used by Harris and Hyde? who reported a rate constant of 0.37 **s-l.** We also obtained a rate constant of 0.38 **s-I** from data at 360 nm using all the absorbance-time trace for reaction at this acidity. However, as with the 512-nm data, largedepartures from true first-order behavior were apparent at early times. $dI = 2.70$ M.

different from that of $[Co(en)_2CO_3]^+$ in the presence of 2.70 M $NaClO₄ (\lambda_{max} (\epsilon) = 512 \text{ nm} (130), 358 \text{ nm} (116)).$ Hydrolysis of $[Co(en)_2CO_3]^+$ in 2.70 M $HClO_4$ involves progressively decreasing absorbances above 500 and below 420 nm, but a more complex behavior is shown in the intermediate region. Difference spectra also obtained under the 2.70 M H ⁺ condition (Figure 2) show that in the range 460-500 nm the reaction initially gives rise to an absorbance increase, followed by a decrease after approximately 1 s.¹⁰ This result was confirmed by detailed rate measurements at 477 nm over a range of $H⁺$ concentrations (0.1-1.0 M, 25.0 °C, $I = 1.0$ M (NaClO₄)), and additional measurements were also made at 512 and 360 nm.

The 477-nm data were chosen for detailed analysis in terms of a consecutive first-order reaction scheme, $A \rightarrow B \rightarrow C$,⁵ using an OLIS fitting routine.' This wavelength was chosen because it gave the maximum differentiation in absorbance changes for the two reactions (Figure 2). This analysis furnished values for k_{fast} and k_{slow} as well as the calculated absorbance change Λ_{flat} and Λ_{slow} as well as the calculated absorbance enlinger associated with each $(\Delta A_1, \Delta A_2)$. Rate constants are listed in Table I $(k_{\text{fast}}^{\text{obs}}, k_{\text{slow}}^{\text{obs}})$. The quality of the fit can be judged from Figure 3, which gives observed and calculated absorbancetime traces for the reaction in 1.0 M HClO₄.

Figure 3. Observed and calculated absorbance-time traces (477 nm) for reaction of 6.94 mM [Co(en)~cO~]+ in 1.00 **M** HC104. The time **axis** is split, with the first 100 data points being collected over **1.5 s** and the remaining 100 being collected over the next 8 s. The fit uses $k_{\text{fast}} = 0.93$ s^{-1} , $\Delta A_{\text{fast}} = 0.290$ and $k_{\text{slow}} = 0.467$ s^{-1} , $\Delta A_{\text{slow}} = -0.340$.

Major features to come out of this analysis were (1) the independence of k_{fast} on [H⁺] $(k_{\text{fast}} = 0.93 \pm 0.03 \text{ s}^{-1})$ and (2) the substantial acid dependence of k_{slow} , which fits the rate expression

$$
k_{\text{slow}} = \frac{k'K[\text{H}^+]}{1 + K[\text{H}^+]} \tag{1}
$$

Calculated values (using $k' = 0.85 \pm 0.04$ s⁻¹ and $K = 1.18 \pm 0.04$ $0.10 M^{-1}$) of k_{slow} are given in Table I, and excellent agreement is found. It will be noted that k_{slow} approaches k_{fast} with increasing $[H⁺]$. Similar treatment of the 512-nm (or 360-nm) data, where the absorbance changes for the two processes are in the same sense(cf. Figure2), failed **togiveuniquesolutions.ll** Inanattempt to duplicate the analytical method of Harris and Hyde,² we found that good, and meaningful (Table I), fits to a single exponential could only be obtained by using the final 15-25% of the *5* 12-nm (or 360-nm) absorption traces. If more extensive data were used, increasing distortion from first-order behavior was found, and the "best fit" observed rate constants showed increasing variation.¹² The fact that k_{slow} approaches k_{fast} as $[H^+]$ increases required great care in **data** choice and treatment, as well as the collection of data over extensive time periods of **both** reactions.

We attribute the first observed reaction $(k_{\text{fast}} = 0.93 \text{ s}^{-1})$ to the second mechanistic process,¹³ i.e. to the spontaneous hydrolysis of the monodentate *cis-* [Co(en)z(OHz)(OCOzH)] **2+** intermediate (Scheme I; $k_{\text{fast}} = k_2$).¹⁴ This is consistent with the known pH independence of other reactions of monodentate carbonates in

- (13) Changes in absorbance for the consecutive first-order scheme $A \rightarrow B \rightarrow C$ follow the time course $A_i - A_m = M e^{-k_1 t} + N e^{-k_1 t}$ where *M* and *N* are complex functions of k_1 , k_2 and extinction coefficients for A, B, and C. At long reaction times one of the exponentials will normally dominate (provided $k_1 \neq k_2$),⁵ but which of k_1 or k_2 corresponds to k_{slow} depends **on** which is the smaller.
- **(14) In** an early and closely related study of the [Co(tren)CO3]* system, spectral observation at 504 nm revealed two phases for reaction in **2.0 M H+. Thsse** were similarly attributed **to** chelated ring **openiq** and hydrolysis of the resultant mondentatecomplex: Dasgupta,T. **P.: Harris,** G. **M.** *J. Am. Chem. SOC.* **1971,** 93.91.

⁽IO) Rapid-scan spectra over the range 345-586 nm reported previously3 for reaction in 2.0 M **HClO4** failed to show this feature.

⁽¹¹⁾ Various combinations of k_{fast} , k_{slow} and ΔA_1 , ΔA_2 gave fits of comparable quality. This emphasizes the need for discriminating absorption data in this type of analysis.⁵ For the present reaction a unique solution could not be obtained since the extinction coefficients of **both B** and A were not be obtained since the extinction coefficients of **both B** and **A were** not **known** with certainty at **thm** wavelengths and because **both** reactions involved absorbance decreases.

⁽¹²⁾ For example, in 1.0 M HClO₄ best-fit values for k_{slow} ($k^{\text{obs}, c}$, Table I) were 0.310s⁻¹ (50-ms delay following mixing, 100% data treated), 0.362 s^{-1} (1 s, final 80%), 0.410 s⁻¹ (2.5 s, final 48%), and 0.450s⁻¹ (5.0 s, final 16%).

acid media,^{15,16} and the magnitude of k_2 (0.93 s⁻¹) agrees well with those found for such reactions (e.g. 1.10 s⁻¹ for $[Co(NH₃)₅$ - $OCO₂H$ ²⁺.¹⁶ The **second observed** reaction at 477 nm (k_{slow}) is attributed to the first mechanistic process, viz. to be opening of the four-membered bicarbonato chelate $[Co(en)_2CO_3H]^{2+}$ for which $k' = 0.85$ s⁻¹ equates with k_1 . Thus K_a (Scheme I) = $1/K$ $(eq 1) = 0.9 \pm 0.1$ M. This value suggests that some 50% of the chelate should exist in the protonated form in **1 M** acid.

We therefore set about to directly observe the protonated chelate and to measure K_a at $I = 1.0$ M (NaClO₄) by using zero-time absorbance data. It is clear from Figure **1** that the first observed spectrum of $[Co(en)_2CO_3]$ ⁺ at high acid concentration differs appreciably from that observed in NaC104. This difference is significant in the range **500-530** nm, and **5 12** nm was chosen as the wavelength of maximum differentiation. Spectralobservation **was** made over a **0.143-s** time **period** (following a **5-ms** time delay after mixing), and accurate **(h0.003** absorbance unit) zerotime absorbances (A_{obs}) were obtained by extrapolation. These data are given in Figure 4 as a plot of ΔA vs [H⁺] where $\Delta A = A_1 - A_{obs}$ and where A_1 represents the absorbance of $[Co(en)]_2$ - $CO₃$ ⁺ in the absence of acid (i.e. in 1.0 **M** NaClO₄). If $A₂$ represents the absorbance of the bicarbonate chelate $[Co(en)]_2$ - $(CO₃H)²⁺$, then K_a may be obtained from the relationship

$$
\Delta A = \frac{(A_1 - A_2)[\text{H}^+]}{K_1 + [\text{H}^+]}
$$
 (2)

Least-squares fitting of the data gave $K_a = 1.1 \pm 0.1$ M,¹⁷ and a comparison between the experimentally obtained ΔA values

- (15) Dasgupta, T. P.; Harris, G. M. *J. Am. Chem. Soc.* **1968**, 90, 6360. van Eldik, R.; Palmer, D. A.; Kelm, H.; Harris, G. M. *Inorg. Chem.* **1980**, **19.3679. van Eldik, R.; Palmer, D. A.; Harria, G. M.** *Inorg. Chem.* **1980,19, 3673.**
-
- **(16) Palmer, D. A.; Harris, G. M.** *Inorg. Chem.* **1974,13,965. (17) Since [Co(en)~CO~H]~+is never fully formedin theconcentrationrange** $0.1 \leq [H^+] \leq 1.0$ M, A_2 was also treated as a variable in the fitting **routine (cf. Figure 4).**

Figure 4. Plot of zero-time absorbance dflercncca, **AA** *(we* text), **venu** $[H^+]$ for $[Co(en)_2CO_3]^+$ in $HClO_4/NaClO_4$ mixtures $(\lambda = 512 \text{ nm})$ $[Co]_T = 2.61 \text{ mM}, 25.0^{\circ}$ C). Each point represents the average (± 0.003) **of five** absorbance **determinations. The solid lie ia drawn wing** *eq* **2,** with $K_a = 1.1 \text{ M}^{-1}$ and $A_1 - A_2 = 0.226$.

and the computer-generated fit is shown in Figure **4.** The value of K_a is in good agreement with that found kinetically (0.9 ± 0.1) **MI.**

So, in summary, the acid-catalyzed hydrolysis of [Co- $(\text{en})_2\text{CO}_3$ ⁺ follows the biphasic process given by Scheme I $(k_1 = 0.85 \pm 0.04 \text{ s}^{-1}, k_2 = 0.93 \pm 0.03 \text{ s}^{-1})$ following rapid preprotonation $(K_a = 1.0 \pm 0.1 \text{ M})$. We have found that similar preprotonation occurs with other bidentate carbonato complexes and that the differences in the observed rate constants for ring opening resides largely in the rates of Co-0 bond cleavage in the protonated reactants.18

(18) Clark, C. R.; Buckingham, D. A. To k published.